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Abstract

Existing research suggests that a considerable fraction
(5-10%) of the source code of large-scale computer
programs is duplicate code (“clones”).  Detection and
removal of such clones promises decreased software
maintenance costs of possibly the same magnitude.
Previous work was limited to detection of either near-
misses differing only in single lexems, or near misses only
between complete functions.  This paper presents simple
and practical methods for detecting exact and near miss
clones over arbitrary program fragments in program source
code by using abstract syntax trees.  Previous work also did
not suggest practical means for removing detected clones.
Since our methods operate in terms of the program
structure, clones could be removed by mechanical methods
producing in-lined procedures or standard preprocessor
macros.

A tool using these techniques is applied to a C
production software system of some 400K source lines, and
the results confirm detected levels of duplication found by
previous work.  The tool produces macro bodies needed for
clone removal, and macro invocations to replace the clones.
The tool uses a variation of the well-known compiler
method for detecting common sub-expressions.  This
method determines exact tree matches; a number of
adjustments are needed to detect equivalent statement
sequences, commutative operands, and nearly exact
matches.  We additionally suggest that clone detection
could also be useful in producing more structured code, and
in reverse engineering to discover domain concepts and
their implementations.

Keywords
Software maintenance, clone detection, software
evaluation, Design Maintenance System

1 Introduction

Data from previous work [Lague97, Baker95] suggests
that a considerable fraction (5-10%) of the source of large
computer programs is duplicated code.  Programmers

routinely perform ad hoc code reuse by brute-force copying
code fragments that implement actions similar to their
current need, and performing a cursory (often empty!)
customization of the copied code to the new context.

The act of copying indicates the programmer’s intent to
reuse the implementation of some abstraction. The act of
pasting is breaking the software engineering principle of
encapsulation.  While cloning may be unstructured, it is
commonplace and unlikely to disappear via fiat.  Its very
commonness suggests we should offer programmers tools
that allow them to use implementations of abstractions
without breaking encapsulation.

In the meantime, detection and replacement of such
redundant code by subroutine calls, in-lined procedure
calls, macros, or other equivalent shorthand that effect the
same result, promises decreased software maintenance
costs corresponding to the reduction in code size.  Since
much of present software engineering is focused on finding
small-percentage process gains, a mechanical method for
achieving up to 10% savings is well worth investigating.

We define an idiom as a program fragment that
implements a recognizable concept (data structure or
computation).  A clone is a program fragment that identical
to another fragment.  A near miss clone is a fragment,
which is nearly identical to another.  Clones usually occur
when an idiom is copied and optionally edited, producing
exact or near-miss clones.

Previous clone detection work was limited to detection
of either exact textual matches, or near misses only on
complete function bodies. This paper presents practical
methods, using abstract syntax trees (ASTs), for detecting
exact and near miss clones for arbitrary fragments of
program source code.  Since detection is in terms of the
program structure, clones can be factored out of the source
using conventional transformational methods.

A tool using these detection techniques is applied to a C
production software system of some 400K SLOC and the
results confirm detected levels of duplication found by
previous work.  The tool uses a variation of the well-known
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compiler method for detecting common sub-expressions
[Aho85], which determines exact tree matches essentially
by hashing.  A number of adjustments are needed to detect
clones in the face of commutative operands, near misses,
and statement sequences.

We additionally suggest that clone detection could also
be useful in producing more structured code, as well as
discovering domain concepts and their idiomatic
implementations.

Section 2 discusses the causes of clones.  Section 3
discusses why we chose AST-based clone detection.
Section 4 describes the basic AST clone detection
algorithm.  Section 5 builds on the basic method to detect
clone sequences.  Section 6 discusses detection of near-
miss clones generalized from previously discovered clones.
Section 7 discusses the problems of engineering a clone
detector for scale.  Section 8 reports the results of applying
the clone detector to a running software system, and
analyzes the results.  Section 9 discusses the relation
between clones and domain concepts.  Section 10 reports
possible future work.  Section 11 describes related work.

2 Why Do Clones Occur?

Software clones appear for a variety of reasons:
• Code reuse by copying pre-existing idioms
• Coding styles
• Instantiations of definitional computations
• Failure to identify/use abstract data types
• Performance enhancement
• Accidents

State of the art software design has structured design
processes, and formal reuse methods.  Legacy code (and,
alas, far too much of new code) is constructed by less-
structured means.  In particular, a considerable amount of
code is or was produced by ad hoc reuse of existing code.
Programmers intent on implementing new functionality
find some code idiom that perform a computation nearly
identical to the one desired, copy the idiom wholesale and
then modify in place.  Screen editors that universally have
“copy”  and “paste”  functions hasten the ubiquity of this
event.

In large systems, this method may even become a
standard way to produce variant modules.  When building
device drivers for operating systems, much of the code is
boilerplate, and only the part of the driver dealing with the
device hardware needs to change.  In such a context, it is
commonplace for a device driver author to copy entirely an
existing, well-known, trusted driver and simply modify it.
While this is actually good reuse practice, it exacerbates the
maintenance problem of fixing a bug found in the “ trusted”
driver by replicating its code (and reusing its bugs) over
many new drivers.

Sometimes a “style”  for coding a regularly needed code
fragment will arise, such as error reporting or user interface
displays.  The fragment will purposely be copied to
maintain the style. To the extent that the fragment consists
only of parameters this is good practice.  Often, however,
the fragment unnecessarily contains considerably more
knowledge of some program data structure, etc.

It is also the case that many repeated computations
(payroll tax, queue insertion, data structure access) are
simple to the point of being definitional.  As a
consequence, even when copying is not used, a
programmer may use a mental macro to write essentially
the same code each time a definitional operation needs to
be carried out.  If the mental operation is frequent, he may
even develop a regular style for coding it.  Mental macros
produce near-miss clones: the code is almost the same
ignoring irrelevant order and variable names.

Some clones are in fact complete duplicates of
functions intended for use on another data structure of the
same type; we have found many systems with poor copies
of insertion sort on different arrays scattered around the
code.  Such clones are an indication that the data type
operation should have been supported by reusing a library
function rather than pasting a copy.

Some clones exist for justifiable performance reasons.
Systems with tight time constraints are often hand-
optimized by replicating frequent computations, especially
when a compiler does not offer in-lining of arbitrary
expressions or computations.

Lastly, there are occasional code fragments that are just
accidentally identical, but in fact are not clones.  When
investigated fully, such apparent clones just are not
intended to carry out the same computation.  Fortunately,
as size goes up, the number of accidents of this type drops
off dramatically.

Ignoring accidental clones, the presence of clones in
code unnecessarily increases the mass of the code.  This
forces programmers to inspect more code than necessary,
and consequently increases the cost of software
maintenance.  One could replace such clones by
invocations of clone abstractions once the clones can be
found, with potentially great savings.

3 Clone Detection using ASTs

The basic problem in clone detection is the discovery of
code fragments that compute the “same”  result.  To do this,
we must first fragment the program in parts we are willing
to compare, and then determine if fragment pairs are
equivalent.  Since determining that even a single fragment
halts is impossible, we cannot determine that two arbitrary
program fragments halt under the same circumstance, and
thus it is impossible in theory to decide that they compute
identical results.  Since false negatives are acceptable (as
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engineers we have no choice), then deep semantic analysis
conservatively bounded by time limits could be used for
equivalence detection.  However, considerable
infrastructure may be required—in the form of semantic
definitions, theorem provers, etc.  In practice, we are
willing to give up detecting complete semantic equivalence
because many clones come about due to copy-and-paste
editing processes.

Simpler definitions of code equivalence may suffice if
too many false positives are not produced.  This suggests
clone detection by more syntactic methods.  One can go as
far as comparing source lines.  Source line equality
assumes that the cloning process introduced no changes in
identifiers, comments, spacing, or other non-semantic
changes, and thus limits clone detection to exact matches.
Consequently, it fails to detect near-miss clones. Closer to
full semantics but still a practical possibility would be to
compare program representations in which control and data
flows are explicit.

Semantic Designs is building transformational tools
(DMS) to help modify large software systems [Baxter97].
Such tools typically parse source programs into ASTs as a
first step before transformation.  Due to the early product
state of our tools, we chose to investigate comparing syntax
trees.  This had the attraction of directly avoiding confusing
but uninteresting changes at the lexical level.

As a first step in the clone detection process, the source
code is parsed and an AST is produced for it.  After that,
three main algorithms are applied to find clones.  The
purpose of the first algorithm, which we call the Basic
algorithm, is to detect sub-tree clones. The second one,
which we call the sequence detection algorithm, is
concerned with the detection of variable-size sequences of
sub-tree clones, and is used essentially to detect statement
and declaration sequence clones.  The third algorithm looks
for more complex near-miss clones by attempting to
generalize combinations of other clones.  The resulting
detected clones can then be prettyprinted.   We did not
carry out clone removal.

4 Finding Sub-tree Clones

In principle, finding sub-tree clones is easy: compare
every subtree to every other sub-tree for equality.  In
practice, several problems arise: near-miss clone detection,
sub-clones, and scale.  Near misses we handle by
comparing tress for similarity rather than exact equality.
The sub-clone problem is that we wish to recognize
maximally large clones, so clone subtrees of detected
clones need to be eliminated as reportable clones.

The scale problem is harder.  For an AST of N nodes,
this comparison process is O(N^3), and, empirically, a
large software system of M lines of code has N=10*M AST
nodes (if we consider comparing sequences of trees, the

process is O(N^4)!).  Thus, the amount of computation
becomes prohibitively large.

In order to tackle this problem it is possible to partition
the sets of comparisons by categorizing sub-trees with hash
values. The approach is based on the tree matching
technique for building DAGs for expressions in compiler
construction [Aho86].  This allows the straightforward
detection of exact sub-tree clones.  If we hash sub-trees to
B buckets, then only those trees in the same bucket need be
compared, cutting the number of comparisons by a factor of
B.  We choose a B of approximately the same order as N;
in practice, B=10% N means little additional space at great
savings in terms of computation.  We have found that the
cost of comparing individual trees averages close to a
constant, rather than O(N), and so hashing allows this
computation to occur in practice in time O(N).

This approach works well when we are finding exact
clones.  When locating near-miss clones, hashing on
complete subtrees fails precisely because a good hashing
function includes all elements of the tree, and thus sorts
trees with minor differences into different buckets.  We
solved this problem by choosing an artificially bad hash
function.  This function must characterized in such a way
that the main properties one wants to find on near-miss
clones are preserved.  As we described in Section 2, near
miss clones are usually created by copy and paste
procedures followed by small modifications.  These
modifications usually generate small changes to the shape
of the tree associated with the copied piece of code.
Therefore, we argue that this kind of near-miss clone often
has only some different small sub-trees.  Based on this
observation, a hash function that ignores small sub-trees is
a good choice.  In the experiment presented here, we used a
hash function that ignores only the identifier names (leaves
in the tree).  Thus our hashing function puts trees which are
similar modulo identifiers into the same hash bins for
comparison.

Rather than comparing trees for exact equality, we
compare instead for similarity, using a few parameters.
The similarity threshold parameter allows the user to
specify how similar two sub-trees should be. The similarity
between two sub-trees is computed by the following
formula:

Similar ity = 2 x S /  (2 x S + L + R)
where:

S = number of shared nodes
L = number of different nodes in sub-tree 1
R = number of different nodes in sub-tree 2

The mass threshold parameter specifies the minimum sub-
tree mass (number of nodes) value to be considered, so that
small pieces of code (e.g., expressions) are ignored.

We combine these methods to detect sub-tree clones,
giving the Basic clone detection algorithm in Figure 1. The
Basic algorithm is straightforward.  In Step 2, the hash
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codes for each sub-tree are computed to place them in the
respective hash bucket.  This step ignores small subtrees,
thus implementing the mass threshold in a way that further
reduces the number of comparisons required considerably,
as the vast majority of trees are small.  After that, every
pair of sub-trees located in the same hash bucket is
compared, if the similarity between them is above the
specified threshold, the pair is added to the clone list, and
all respective sub-clones are removed.

1. Clones=∅
2. For each subtree i:

If mass(i)>=MassThreshold
Then hash i to bucket

3. For each subtree i and j in the same bucket
If CompareTree(i,j) > SimilarityThreshold

Then { For each subtree s of i
  If IsMember(Clones,s)
  Then RemoveClonePair(Clones,s)
For each subtree s of j
  If IsMember(Clones,s)
  Then RemoveClonePair(Clones,s)
AddClonePair(Clones,i,j)

     }

Figure 1 - Basic Subtree Clone Detection Algorithm

A minor enhancement to subtree clone detection is the
detection of similar trees containing commutative operators
such as add (“+” ).   The value is in detecting re-ordered
operands in “mental macros” ; in reused-code, it is rare for a
programmer to swap operands while editing.  Implementing
this requires merely that such tree node types be identified
as commutative, that the hashing function produces
identical values on commutative trees, and that the
similarity function tries all child orderings on commutative
subtrees.

5. Finding Clone Sequences

The preceding section shows how to detect clones as
trees, and is purely syntax driven.  In practice, we are
interested in code clones that have some semantic notion of
sequencing involved, such as sequences of declarations or
statements.  In this section, we show how to detect
statement sequence clones in ASTs using the Basic
algorithm as a foundation.

Such sequences show up in ASTs not as arbitrary trees,
but rather as right- or left-leaning trees with some kind of
identical sequencing operator as root.  Sequences of sub-
trees appear in AST as a consequence of the occurrence in
the dialect grammar of rules encapsulating sequences of
zero or more syntactic constructs. These sequence rules are
typically expressed by the use of left or right recursion on
production rules.  When a parser generator produces
parsers that automatically generate AST, it is common, as
in our case, that the trees have a left-leaning shape.
Consider Figure 2, which shows a pair of short sequences
of statements along with their corresponding trees.  Note
that the left-leaning tree reverses the order of the statements

because of the order in which the parse reductions are done
as determined by the controlling grammar rule.  In this
example, nodes labeled with a ” ;”  are sequence nodes for
statements belonging to a compound statement.  Because a
generic clone detector has no idea which tree nodes
constitute sequence nodes, these nodes must be explicitly
identified to the clone detector.

void f ()
{
  x=0;
  a=1;
  b=2;
  c=3;
  w=4;
}

void g ()
{
  y=2;
  a=1;
  b=2;
  c=3;
  i=5;
}

=

4

;

;

;

;

;

w

=

3c

=

2b

=

1a

=

0x

=

5

;

;

;

;

;

i

=

3c

=

2b

=

1a

=

2y

Figure 2 – Example of clone sequence

Such sequences of sub-trees are not strictly trees, and
consequently require a special treatment. In Figure 2, the
Basic algorithm finds three clones corresponding to the
assignment statements for variables a, b and c. But, it is
unable to detect the clone sequence, because it is not a
single sub-tree, but rather a sequence of sub-trees.  The
sequence detection algorithm copes with this problem by
comparing each pair of sub-trees containing sequence
nodes, looking for maximum length sequences that
void f ()
{
  x=0;
  if (d>1)
  {
    y=1;
    z=2;
  }
  else
  {
    h=2;
    z=1;
    y=3;
  }
}

The program has three sequences.
L ist Structure:
1. { x=0; if(d>1) … }

     hashcodes = 675, 3004

2. { y=1; z= 2;}

    hashcodes = 1020,755

3. { h=2; z=1; y=3;}
    hashcodes = 786, 756, 704

Figure 3 – List structure example

encompasses previously detected clones. Short sequences
(especially those of length one) are not interesting sequence
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clones.  A minimum-sequence length threshold parameter
controls the minimum acceptable size of a sequence.

To find sequence clones, we build a list structure where
each list is associated with a sequence in the program, and
stores the hash codes of each sub-tree element of the
associated sequence.  Figure 3 shows an example of the list
structure that is built.  This list structure allows us to
compute the hash code of any particular subsequence very
quickly.

Figure 4 gives the sequence detection algorithm. This
algorithm compares each pair of sub-trees containing
sequence nodes looking for the maximum length of
possible sequencing that encompasses a clone.  Whereas
the Basic algorithm finds three clones in Figure 2, the
sequence detection algorithm finds the sequence
comprising the assignments for variables a, b and c as a
single clone. Following the requirement that larger clones
subsume smaller ones, detecting this sequence immediately
invalidates the clone status of the atomic statements found
as clones by the Basic algorithm.

1. Build the list structures describing sequences
2. For k = MinimumSequenceLengthThreshold

     to MaximumSequenceLength
3. Place all subsequences of length k

into buckets according to subsequence hash
4. For each subsequence i and j in same bucket

If CompareSequences (i,j,k) >
          SimilarityThreshold
Then { RemoveSequenceSubclonesOf(clones,i,j,k)
       AddSequenceClonePair(Clones,i,j,k)
     }

Figure 4 – Sequence detection algorithm

The current tool does have a method for detecting near
miss sequence clones in which the sequences are of
unequal length.  This causes us to miss clones in which
statements have been inserted or deleted.

6. Generalizing clones

After finding exact and near-miss clones, we use
another method (Figure 5) to detect more complex near-
miss clones.  The method consists of visiting the parents of
the already-detected clones and check if the parent is a near
miss clone too.  We also delete subsumed clones.  Note that
the details related regarding sequence handling have been
omitted for clarity.

A significant advantage of this method is that any near-
miss clones must be assembled from some set of exact sub-
clones, and therefore no near-miss clones will be missed.
(Since acceptance of the paper, we have developed a new
version of the clone detector that uses only exact clone
hashing on small subtrees, sequence detection and this
generalization method.  This new version has better
performance and detects any kind of near miss clones.
Details will have to wait for another paper.)

1. ClonesToGeneralize=Clones
2. While ClonesToGeneralize≠∅
3.  Remove clone(i,j) from ClonesToGeneralize
4.  If CompareClones(ParentOf(i), ParentOf(j))

   > SimilarityThreshold
     Then {

RemoveClonePair(Clones,i,j)
AddClonePair(Clones,

                     ParentOf(i), ParentOf(j))
AddClonePair(ClonesToGeneralize,
             ParentOf(i),ParentOf(j))
   }

5. End While

Figure 5 – Detecting more complex clones

The detected clone set is the union of sequence clones
and the results of the clone generalization process.  After
all clones were detected, we generate a macro that abstracts
each pair of clones.  Figure 6 shows an example of near
miss sequence clones detected by the tool in the application
discussed in the next section.  Figure 7 shows the macro
generated by the clone detector for the clones in Figure 5.
Trivial syntax modifications can turn this into legal C
preprocessor directives, and the detected clones could be
removed since the tool knows their source.

In the last step, the tool tries to group instances of the
same clone in order to provide additional feedback on the
number of instances of each clone. The clones are divided
in-groups following the first fit approach; i.e. a clone is
inserted in the first group where it is a clone of all instances
already inserted.

7 Detector  Engineer ing

To build a practical clone detector one must address
several issues:

• Parsing and building the AST
• Preprocessor directives
• Reporting results
• Industrial scale source codes

Parsing the program suite of interest requires a parser
for the language dialect of interest.  While this is nominally
an easy task, in practice one must acquire a tested grammar
for the dialect of the language at hand.  Often for legacy
codes, the dialect is unique and the developing organization
will need to build their own parser.  Worse, legacy systems
often have a number of languages and a parser is needed
for each.  Standard tools such as Lex and Yacc are rather a
disappointment for this purpose, as they deal poorly with
lexical hiccups and language ambiguities.  In our Design
Maintenance System™ (DMS™) tool [Baxter97] we use a
variation of a Tomita-style parser [Tomita91], that can
parse ambiguous grammars (such as C++) with impunity,
cutting the time to develop a usable parser significantly.  In
particular, we use the parsing algorithm of [Wagner97],
which also conveniently builds the parse tree.  However,
when using a Tomita-style parser, special nodes called
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Symbol nodes, representing ambiguous parses, must be
taken into account in the clone detection algorithm.  We
ignore ambiguous sub-trees by choosing a canonical son
based on grammar rule number.

Preprocessor directives always complicate processing
source files.  For the sample system in C++, we handled
them in various ways:

• Added preprocessor directives to the language
syntax, effectively extending the language to
include well-structured directives;

• Ignored (processed) INCLUDE directives, and
concatenated INCLUDE files onto the input; and

• Ran the preprocessor to get rid of “unstructured”
directives.

When detecting clones in the presence of INCLUDE files,
the included text must be treated as part of the include file,
not part of the including file.

Program scale is a problem for any clone detection
scheme.  For our experiment, we were limited to 100,000
line chunks in 600Mb RAM because of artificially large
memory-based data structures in our prototype DMS.  One
unavoidable problem is the retention of comments to enable
re-printing of detected clones in their exact source form;
most conventional lexers throw comments away as being
“useless”  whitespace.  We believe one can perform clone
detection on some 10 million lines in 2Gb with careful
design and one tree node per processor cache line.  A disk-
based implementation could handle larger size, but batch
performance is likely to be much worse because one would
replace RAM-based hash bucket access and tree walking
times with disk I/O times.  A reasonable possibility is to
batch compute once, and then incrementally compute the
hash codes and do clone detection for changed modules.

8 Clone Detection Applied

The clone detector was applied to the source code for a
process-control system having approximately 400 KSLOC
of C code.  The system was created 7 years ago by reusing
and modifying a then 3-year-old code of a system with
similar functionality.  15 programmers presently maintain
it.  The programmers who did the port were not those who
developed the original system.  The software is partitioned
into subsystems according to function.

Figure 8 shows the percentage of cloned code in 19
different subsystems, computed as the ratio of redundant
SLOC and subsystem SLOC.  Three subsystems have
approximately 28% cloned code.  (Subsystem 3 is believed
to be an erroneous data point because the clone detector at

--------------------MACRO-------------------
Db_err error;
Bool fail;
if ( db_get_int ( DB_CF_VAC_GROUP_REGEN_IV,
    & error ) )
{
  vac_regen_group_ob ( );
  return ( 0 );
}
db_put_ts ( #0 , TRUE , & error );
db_put_int ( #1 , VAC_REGEN , & error );
CALL ( fac_n2 ( ) );
alm_activate ( #2 , ALM_DONT_BLOCK ,

       ALM_DONT_ACK , 60 , MDP_NULL ,
       MDP_NULL );

--------------- MACRO BINDINGS --------------
#2 = ALM_VAC_P5_REGENING ,
     ALM_VAC_P4_REGENING
#0 = DB_VAC_OI_P5_CRYO_REGEN_IN_PROG_TSV ,
     DB_VAC_OI_P4_CRYO_REGEN_IN_PROG_TSV
#1 = DB_VAC_CRYO_P5_STATE_IV ,
     DB_VAC_CRYO_P4_STATE_IV

----------------------------------------------

Figure 7 - A Unifying Macro

--------------------- CLONE ---------------------
 Similarity = 0.929411764705882
 From 13407 To 13423

Db_err error;
Bool fail;
if ( db_get_int ( DB_CF_VAC_GROUP_REGEN_IV ,

   & error ) )
{
  vac_regen_group_ob ( );
  return ( 0 );
}
db_put_ts ( DB_VAC_OI_P5_CRYO_REGEN_IN_PROG_TSV ,

    TRUE , & error );
db_put_int ( DB_VAC_CRYO_P5_STATE_IV , VAC_REGEN ,

      & error );
CALL ( fac_n2 ( ) );
alm_activate ( ALM_VAC_P5_REGENING ,

ALM_DONT_BLOCK , ALM_DONT_ACK ,
60 , MDP_NULL , MDP_NULL );

-----------------------------------------------
 From 13208 To 13224

Db_err error;
Bool fail;
if ( db_get_int ( DB_CF_VAC_GROUP_REGEN_IV,
                  & error ) )
{
  vac_regen_group_ob ( );
  return ( 0 );
}
db_put_ts ( DB_VAC_OI_P4_CRYO_REGEN_IN_PROG_TSV ,
            TRUE , & error );
db_put_int ( DB_VAC_CRYO_P4_STATE_IV , VAC_REGEN ,

     & error );
CALL ( fac_n2 ( ) );
alm_activate ( ALM_VAC_P4_REGENING ,

ALM_DONT_BLOCK , ALM_DONT_ACK ,
60 , MDP_NULL , MDP_NULL );

Figure 6 – Sequence clones found (from Application)
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present erroneously reports overlapping sequences of self-
similar code as clones).  Subsystem 15 was created by
cloning device driver code capable of handling one I/O port
to allow handling of a second port. Done under schedule
pressure, it was already known to be highly redundant.  We
observe that schedule pressure has also prevented this
redundancy from ever being fixed, and the clone tool could
do this almost automatically.  Subsystem 16 is code that
services a number of devices and was created similarly to
subsystem 15, as confirmed by the developers. The average
clone percentage is 12.7% for all subsystems.

If software maintenance costs were distributed evenly
across source, this suggests 12% savings in maintenance
costs.  In practice, some systems are more troublesome than
others.  Subsystem 2 is difficult to maintain and accounts
for a large percentage of defects written against the system.
A reduction in code here could have disproportionate
savings in costs.

Clone percentages

0
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15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

subsystems

Series1

Figure 8 – Clone percentages

An interesting question is how often code is copied, and
how much is copied. Figure 9 shows the number of times
that clones of various sizes (SLOC) were found.  The three
largest subsystems are represented in this graph.  Clone
sizes larger than 25 are rare and are therefore not shown.
However, within subsystem 15 an unexpected clone of size
497 was found!  We conclude that most clones are
relatively small in size, on the order of 10 SLOC.

Clone size against Number of Occurrences
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Figure 9 – Clone size against number of occurrences

One hopes that as a system matures, it becomes better
organized.  Figure 10 shows the changes in percentage of
clones for four fairly volatile subsystems over four releases
with a periodicity of approximately 6 months.  Three of the
four subsystems show a steady improvement in clone
density, but one shows a sharp increase.  All could clearly
use a clone removal pass.

Clone Percentage Over Time
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Figure 10 – Clone percentage over time

We had hypothesized that larger files might have larger
clone percentages, because of opportunity and complexity.
Figure 11 compares clone percentage with subsystem size
in KSLOC.  Although the 3 largest files have the largest
number of clones, no pattern is recognizable.  We conclude
that clone ratios are relatively independent of subsystem
size.

Size against Clone Percentage
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Figure 11 – Size against clone percentage

We draw the following conclusions from the data:
1. Higher percentages of cloned code were found in

newer subsystems, which might be expected to be freer
of clones because they are closer to a clean, original
design.  However, it appears that cloning is used to get
the code to work, the code is released as soon as it is
working, and then improved as it stabilizes.  [Lague97]
also found this.

2. We examined the clones in the code for subsystems
having higher clone percentages.  Many clones were
separate functions performing identical operations on
different data types or devices having left versus right
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symmetry.  This appears to have been a stylistic
choice, perhaps made in the interests of apparent
modularity or clarity (although the cost of maintaining
all those copies argues against actual modularity).  It is
interesting to notice that subsystems having a greater
degree of this stylistic copying are also the subsystems
which change most infrequently, largely low-level
utility programs (data access, data initialization, etc).
This supports finding 1) in that utility code is often
stable, therefore rarely modified and therefore not
‘cleaned up’ .

3. There is no correlation between subsystem size and
clone percentage.  One might expect to have more
clones in larger subsystem because of the conceptual
complexity of grasping the entire subsystem.  It
appears that deadline pressures, similarities in
functionality, and programmer style have more affect
on clone density than code size.

9 Clones as Domain Concepts

We believe that a clone detector tool can be of great
value for a domain analyst capturing domain concepts from
the source code of similar systems.  A key issue in domain
analysis is the need to understand commonalities in
concepts and implementations across families of software
systems. As defined earlier, idioms are program fragments
that implement specific concepts in a given application
domain. It is reasonable to believe that some of the clones
found in a system are realizations of these concepts,
precisely because they are in repeated demand for carrying
out the application. Such understanding can be used as an
interesting starting point for the abstraction of domain
concepts from source code [DeBaud97].

A domain-analysis process step might include running a
clone analysis for each of several similar systems, followed
by interviews with domain specialists. During these
interviews, the cloned code is shown and the specialists are
asked to provide possible abstractions motivating such
implementations.  The results would be domain concepts
and their abstract implementations as generalized from the
clone instances.  The tool presented in this paper represents
a step forward in the development of auxiliary tools for the
hard task of finding commonalties in similar systems.

device.mode = MOVE_ABS;
device_xf.position = (int) db_get_int(

DB_XFER_ARM_LOAD_IV, &dbstat);
move_swap (& device_xf);
data = (char *) & device_xf;
data_size = sizeof(Msg_device_move);
msg_send((Process_id) DI_DEVICE_XCR,

data ,(Uint16) data_size,
MSG_NO_FLAGS ,
MSG_XCR_DEVICE_XFER_MOVE);

printf("Xfer Arm rotated to load \n");

Figure 12 - A domain idiom found by clone detection

An example of a clone representing a domain idiom is
shown in Figure 12.  These seven lines were repeated eight
times within one source file.  Here the control system is
commanding an arm, which transfers product through the
system, to move to the load position, a basic command for
that device.

10 Future Work

The most obvious next step is to automate the removal
of detected clones from the source (Since paper acceptance,
we have done this).  The organization maintaining the
example application code currently has high software
engineering costs, and appears motivated to carry this
process out manually, given the clone detector shows the
replacement macros.  A follow on step might be to insert
the clone detector into the software engineering check-in
process to eliminate clones as they arise.

There are a number of improvements one could make to
the clone detector itself, including performance, the use of
DAGs and/or dataflow graphs instead of trees and
operations.

The current detector uses some 600Mb RAM and 120
minutes of CPU time to compute exact and near miss
clones for 100K SLOC code.  The space demand is
determined essentially by the size of the abstract syntax
trees and the hash tables.  The AST node size in our
implementation could be reduced by a factor of 4, and
removing ambiguities in the C++ grammar that we used to
parse the C code could reduce the demand by another
estimated 30%, reducing the storage costs to 100Mb.
Much of the clone detection is done by comparing sub-
trees, and is easily parallelizable.  Since our clone detector
is sequentially coded in a parallel language,
PARLANSE™, this should be easy to accomplish.  We
expect a nearly linear speedup to the 8 processors available
on commercial servers, reducing the estimated runtime to
15 minutes.

At present, the detector uses thresholds to eliminate
comparisons of small trees.  This prevents it from detecting
near miss clones in which one clone instance is small, and
the other is large.  We would like to remove this limitation.

The algorithms we presented here will work more
effectively on DAGs, with no change, than on trees.  For
DMS, we plan to convert identifiers in tree leaves into
cross-links to the syntactic construct defining that
identifier, forming DAGs from the parse trees.  This has the
advantage of preventing false-positive exact clones using
accidentally the same textual name, but which actually
refer to different identifiers according to the language
scoping rules (Near miss clones that are parameterized by
these non-identical names will still get found). Type
information could be used to prevent detection of
accidental clones, as many such clones use different types
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in their computation.   In order to properly build DAGs, it
is required that preprocessor primitives, especially
INCLUDE directives, be handled in a structured fashion;
arbitrary “editing”  of source with a preprocessor other
prevents correct type analysis and name resolution.

What one would often like is the identification of two
blocks of code that were cloned, and then patched
differently.   If the patch is the replacement of one language
construct by another, our detector will find it.  If the patch
is the insertion of new code in the middle of a clone,
forming a “split clone” , our present detector will not be
able to find the entire clone, but can identify the preceding
and following fragments as clones.  It would be convenient
if the detector identified such split clones, as they are often
an indication that a clone was defective, and only one
instance was fixed.

A program representation in which control and data
flows are explicit would allow a more semantic-oriented
clone detector that would be insensitive to variable names
and statement ordering.  In particular, this would detect, as
monoliths, clones that have been split by irrelevant
insertions.  It would also not be fooled by reordered data
declarations.  For DMS, we will construct such
representations, and so should be able to build more
sophisticated detectors in the future.

11 Related Work

A fast string-based method, DUP, for detecting exact
clones and  simple near-miss clones, was considered by
[Baker95], who reported 13-20% clones, for a large
application (1M SLOC). When producing clones,
programmers often change white spacing (blanks, tabs,
newlines) and comments, which will disable recognition
based purely on strings.  A simple lexical processor can
overcome this particular problem.  DUP actually compares
strings of lexemes rather than strings of characters to
combat this problem.

Their lexeme-based algorithm seems easy to implement
and operates nicely on scale, but has some shortcomings.
First, it fails to detect clones which differ by other than a
trivial substitution of one lexeme for an identifier. Second,
based on the description, we believe that such a detector
will also falsely detect nonsensical clones, such as the
lexeme sequence frequently found in C programs at the end
of a function: “}; int SomeName(“   Furthermore, DUP’s
matching process cannot detect exact clones with
commutative operators.  An easy way to cure these
problems is to take the language syntax into account, as we
do.  Our detector finds clones, which differ in complex
language constructs, such as expressions or statements. In
any case, more sophisticated clone detection, using name
resolution, cannot be accomplished without parsing and
applying deeper knowledge of the language scoping rules.

The method used by [Lague97] apparently parses the
program text, and then computes a hash code for function
bodies by forming a vector of predefined software metrics
(e.g. SLOC, Halstead, etc.  While this can be used for
recognizing function clones, it appears to make the hashing
function unnecessarily complicated without necessarily
providing a good hash function.  Implementing and running
the clone detection process is not likely to be nearly as fast
as a straightforward implementation like ours, which is
important for the scale in which clone detection is
interesting.  We remark that comparing just function
bodies, however, cuts the volume of comparisons required,
so perhaps this is not a problem if one wants to limit clone
detection to just function bodies.  Furthermore, it is limited
to language constructs on which all the metrics apply,
hinting at the reason it operates only on function bodies.
Such a scheme probably would be ineffective for detecting
data declaration clones (which could be removed in “C”  by
using TYPEDEFs ).  If a wide variety of metrics were used,
it would be likely parsing is necessary to support one of
them, and our scheme could be used directly instead.  If
parsing is not required, then lexical differences may
damage clone detection ability as already suggested.
Finally, one has to augment simple hashing schemes to
reasonably detect near misses, or sequence clones.  Our
method will detect cloned expressions, statement
sequences, data declarations, etc., anything which has a
syntactic structure in a language.

Neither Baker nor Lague constructed macros to enable
clone removal.

Conclusions

A practical method for detecting near-miss and
sequence clones on scale has been presented.  The approach
is based on variations of methods for compiler common-
subexpression elimination using hashing. The method is
straightforward to implement, using standard parsing
technology, detects clones in arbitrary language constructs,
and computes macros that allow removal of the clones
without affecting the operation of the program.  We applied
the method to a real application of moderate scale, and
confirmed previous estimates of clone density of 7-15%,
suggesting there is a “manual”  software engineering
process “redundancy”  constant.  Automated methods can
detect and remove such clones, lowering the value of this
constant, at concomitant savings in software engineering or
maintenance costs.  Clone detection tools also have good
potential for aiding domain analysis.

We expect to report on more advanced clone detection
and removal methods in the near future.
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